PCFG Learning by Nonterminal Partition Search
نویسنده
چکیده
pcfg Learning by Partition Search is a general grammatical inference method for constructing, adapting and optimising pcfgs. Given a training corpus of examples from a language, a canonical grammar for the training corpus, and a parsing task, Partition Search pcfg Learning constructs a grammar that maximises performance on the parsing task and minimises grammar size. This paper describes Partition Search in detail, also providing theoretical background and a characterisation of the family of inference methods it belongs to. The paper also reports an example application to the task of building grammars for noun phrase extraction, a task that is crucial in many applications involving natural language processing. In the experiments, Partition Search improves parsing performance by up to 21.45% compared to a general baseline and by up to 3.48% compared to a task-specific baseline, while reducing grammar size by up to 17.25%.
منابع مشابه
ITRI-02-16 PCFG Learning by Nonterminal Partition Search
pcfg Learning by Partition Search is a general grammatical inference method for constructing, adapting and optimising pcfgs. Given a training corpus of examples from a language, a canonical grammar for the training corpus, and a parsing task, Partition Search pcfg Learning constructs a grammar that maximises performance on the parsing task and minimises grammar size. This paper describes Partit...
متن کاملOptimizing Spectral Learning for Parsing
We describe a search algorithm for optimizing the number of latent states when estimating latent-variable PCFGs with spectral methods. Our results show that contrary to the common belief that the number of latent states for each nonterminal in an L-PCFG can be decided in isolation with spectral methods, parsing results significantly improve if the number of latent states for each nonterminal is...
متن کاملLearning Grammars for Noun Phrase Extraction by Partition Search
This paper describes an application of Grammar Learning by Partition Search to noun phrase extraction, an essential task in information extraction and many other NLP applications. Grammar Learning by Partition Search is a general method for automatically constructing grammars for a range of parsing tasks; it constructs an optimised probabilistic context-free grammar by searching a space of nont...
متن کاملITRI-02-14 Learning Grammars for Noun Phrase Extraction by Partition Search
This paper describes an application of Grammar Learning by Partition Search to noun phrase extraction, an essential task in information extraction and many other NLP applications. Grammar Learning by Partition Search is a general method for automatically constructing grammars for a range of parsing tasks; it constructs an optimised probabilistic context-free grammar by searching a space of nont...
متن کاملGrammar Learning by Partition Search
This paper describes Grammar Learning by Partition Search, a general method for automatically constructing grammars for a range of parsing tasks. Given a base grammar, a training corpus, and a parsing task, Partition Search constructs an optimised probabilistic context-free grammar by searching a space of nonterminal set partitions, looking for a partition that maximises parsing performance and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002